Torsion in skein modules

Giulio Belletti

Joint work with R. Detcherry

Université de Bourgogne

21/11/2024

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

Torsion in skein modules

-47 ▶

э

What this talk is about

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

< □ > < ^[] >

æ

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

-477 ▶

э

Idea: use knots and links (i.e. 1-dimensional submanifolds) to study M.

Idea: use knots and links (i.e. 1-dimensional submanifolds) to study M.

A skein module of M is an algebraic object that encodes links in M.

Idea: use knots and links (i.e. 1-dimensional submanifolds) to study M.

A skein module of M is an algebraic object that encodes links in M.

The main question will be: is torsion in the skein module related to interesting surfaces in M?

Idea: use knots and links (i.e. 1-dimensional submanifolds) to study M.

A skein module of M is an algebraic object that encodes links in M.

The main question will be: is torsion in the skein module related to interesting surfaces in M?

Plan of the talk:

• What is a skein module?

21/11/2024

Idea: use knots and links (i.e. 1-dimensional submanifolds) to study M.

A skein module of M is an algebraic object that encodes links in M.

The main question will be: is torsion in the skein module related to interesting surfaces in M?

Plan of the talk:

- What is a skein module?
- O How is it connected to the character variety?

Made with Goodnotes

Idea: use knots and links (i.e. 1-dimensional submanifolds) to study M.

A skein module of M is an algebraic object that encodes links in M.

The main question will be: is torsion in the skein module related to interesting surfaces in M?

Plan of the talk:

- What is a skein module?
- 2 How is it connected to the character variety?
- O How can we find torsion in the skein module?

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

Framed Links

A framed knot in M is an embedding of $S^1 \times [0, \epsilon] \hookrightarrow M$.

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

3

3/23

3 × 4 3 ×

Image: A matrix and a matrix

Framed Links

A framed knot in M is an embedding of $S^1 \times [0, \epsilon] \hookrightarrow M$.

All the definitions for knots (links, isotopies) carry over exactly as you would imagine.

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

A framed knot in M is an embedding of $S^1 \times [0, \epsilon] \hookrightarrow M$.

All the definitions for knots (links, isotopies) carry over exactly as you would imagine.

You can always project the framed link so that it lies flat on the projecting plane

A framed knot in M is an embedding of $S^1 \times [0, \epsilon] \hookrightarrow M$.

All the definitions for knots (links, isotopies) carry over exactly as you would imagine.

You can always project the framed link so that it lies flat on the projecting plane:

A framed knot in M is an embedding of $S^1 \times [0, \epsilon] \hookrightarrow M$.

All the definitions for knots (links, isotopies) carry over exactly as you would imagine.

You can always project the framed link so that it lies flat on the projecting plane:

Two framed links are isotopic if and only if their diagrams are connected by P^3 Reidemeister moves 2 and 3.

wade with GOOUTOLES

Giulio Belletti (U-Bourgogne)

Kauffman bracket skein module

1990

Definition (Przytycki, Turaev)

The Kauffman bracket skein module of M is defined as

 $S(M) := \mathbb{Z}[A, A^{-1}] \langle \{ \text{framed links up to isotopy } L \subseteq M \} \rangle / \text{K1} \text{ and K2}$

Made with Goodnotes

21/11/2024

Definition (Przytycki, Turaev)

The Kauffman bracket skein module of M is defined as

 $S(M) := \mathbb{Z}[A, A^{-1}] \langle \{ \text{framed links up to isotopy } L \subseteq M \} \rangle / \text{K1} \text{ and K2}$

$$K1 = \bigcirc -A \bigcirc -A^{-1} \bigcirc \bigcirc$$

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

く 何 ト く ヨ ト く ヨ ト

Definition (Przytycki, Turaev)

The Kauffman bracket skein module of M is defined as

 $S(M) := \mathbb{Z}[A, A^{-1}] \langle \{ \text{framed links up to isotopy } L \subseteq M \} \rangle / \text{K1} \text{ and K2}$

Giulio Belletti	(II-Bourgogne)
Made with GOOOI	notes

Take any link in S^3 and project it:

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

Take any link in S^3 and project it:

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

э

Take any link in S^3 and project it: you can resolve all crossings with the move K1 to obtain a linear combination of trivial curves,

Made with Goodnotes

Take any link in S^3 and project it: you can resolve all crossings with the move K1 to obtain a linear combination of trivial curves, and then K2 to remove them.

Made with Goodnotes

Take any link in S^3 and project it: you can resolve all crossings with the move K1 to obtain a linear combination of trivial curves, and then K2 to remove them. So any element in $S(S^3)$ is a multiple of the empty link.

Take any link in S^3 and project it: you can resolve all crossings with the move K1 to obtain a linear combination of trivial curves, and then K2 to remove them. So any element in $S(S^3)$ is a multiple of the empty link.

$$S(S^3) \cong \mathbb{Z}[A, A^{-1}]$$

Because $S(S^3) \cong \mathbb{Z}[A, A^{-1}]$, there is a map sending any framed link *L* to its image under this identification: the result is *the Kauffman bracket* of *L*, which is a variation of the Jones polynomial.

Made with Goodnotes

21/11/2024

The skein module of $S^1 \times S^2$ is

$$S(S^1 \times S^2) = \mathbb{Z}[A, A^{-1}]$$

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

э

3 × 4 3 ×

47 ▶ ◀

The skein module of $S^1 \times S^2$ is

$$S(S^1 \times S^2) = \mathbb{Z}[A, A^{-1}] \oplus$$

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

э

6/23

∃ ► < ∃ ►</p>

47 ▶ ◀

The skein module of $S^1 \times S^2$ is

$$S(S^1 imes S^2) = \mathbb{Z}[A, A^{-1}] \oplus \bigoplus_{i=0}^{\infty} \mathbb{Z}[A, A^{-1}]/(1 - A^{2i+4})$$

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

Torsion in skein modules

21/11/2024

э

6/23

3 × 4 3 ×

47 ▶ ◀

The skein module of $S^1 \times S^2$ is

$$S(S^1 imes S^2) = \mathbb{Z}[A, A^{-1}] \oplus \bigoplus_{i=0}^{\infty} \mathbb{Z}[A, A^{-1}]/(1 - A^{2i+4})$$

Easy to see that $S(S^1 \times S^2)$ should have torsion.

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

The skein module of $S^1 \times S^2$ is

$$S(S^1 imes S^2) = \mathbb{Z}[A, A^{-1}] \oplus \bigoplus_{i=0}^{\infty} \mathbb{Z}[A, A^{-1}]/(1 - A^{2i+4})$$

Easy to see that $S(S^1 \times S^2)$ should have torsion. $S(S \times D^2) = Z(AA^-) [X]$ $S' \times Sg$ Medewith Goodnotes
Giulio Belletti (U-Bourgogne) Torsion in skein modules
21/11/2024
6/23

A torsion element in $S^1 \times S^2$

Giulio Belletti (U-Bourgogne)

The $SL(2, \mathbb{C})$ -character variety of a manifold

 $SL(2,\mathbb{C})^n$

{Homomorphisms $\pi_1(M) \to SL(2,\mathbb{C})$ }

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

Image: A matrix and a matrix

э

{Homomorphisms $\pi_1(M) \to SL(2,\mathbb{C})$ }//conjugation

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

3

8/23

イロト イポト イヨト イヨト

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

Torsion in skein modules

イロト イポト イヨト イヨト

3

The GIT quotient is needed because the orbits of the conjugation action in $SL(2,\mathbb{C})$ are not closed; this quotient takes as points closure of orbits.

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

The GIT quotient is needed because the orbits of the conjugation action in $SL(2, \mathbb{C})$ are not closed; this quotient takes as points closure of orbits. This is an affine algebraic variety, and its algebra of functions is generated by traces:

$$\pi_{c}^{\mathrm{tr}_{\gamma}}(\mathsf{M})$$

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

The GIT quotient is needed because the orbits of the conjugation action in $SL(2, \mathbb{C})$ are not closed; this quotient takes as points closure of orbits. This is an affine algebraic variety, and its algebra of functions is generated by traces:

$$\operatorname{tr}_{\gamma}(\rho)$$

The GIT quotient is needed because the orbits of the conjugation action in $SL(2, \mathbb{C})$ are not closed; this quotient takes as points closure of orbits. This is an affine algebraic variety, and its algebra of functions is generated by traces:

$$\operatorname{tr}_{\gamma}(\rho) = \operatorname{tr}(\rho(\gamma))$$

Made with Goodnotes

21/11/2024
In this case $\pi_1(S^1 \times S^2) = \mathbb{Z}$, so any representation ρ is determined by $\rho(\gamma)$, with γ any generator for \mathbb{Z} (for example, the loop $S^1 \times \{*\}$).

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

In this case $\pi_1(S^1 \times S^2) = \mathbb{Z}$, so any representation ρ is determined by $\rho(\gamma)$, with γ any generator for \mathbb{Z} (for example, the loop $S^1 \times \{*\}$). If $\rho(\gamma)$ is diagonalizable, then it is conjugate to $\begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix}$. $\checkmark \begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix}$ In this case $\pi_1(S^1 \times S^2) = \mathbb{Z}$, so any representation ρ is determined by $\rho(\gamma)$, with γ any generator for \mathbb{Z} (for example, the loop $S^1 \times \{*\}$).

If $\rho(\gamma)$ is diagonalizable, then it is conjugate to $\begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix}$. If $\rho(\gamma)$ is not diagonalizable, then it is conjugate to $\pm \begin{pmatrix} 1 & \epsilon \\ 0 & 1 \end{pmatrix}$ for any

 $\epsilon \neq \mathbf{0}.$

In this case $\pi_1(S^1 \times S^2) = \mathbb{Z}$, so any representation ρ is determined by $\rho(\gamma)$, with γ any generator for \mathbb{Z} (for example, the loop $S^1 \times \{*\}$).

If $\rho(\gamma)$ is diagonalizable, then it is conjugate to $\begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix}$. If $\rho(\gamma)$ is not diagonalizable, then it is conjugate to $\pm \begin{pmatrix} 1 & \epsilon \\ 0 & 1 \end{pmatrix}$ for any $\epsilon \neq 0$. Therefore the closure of this orbit contains $\pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Made with Goodnotes

21/11/2024

In this case $\pi_1(S^1 \times S^2) = \mathbb{Z}$, so any representation ρ is determined by $\rho(\gamma)$, with γ any generator for \mathbb{Z} (for example, the loop $S^1 \times \{*\}$). If $\rho(\gamma)$ is diagonalizable, then it is conjugate to $\begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix}$. If $ho(\gamma)$ is not diagonalizable, then it is conjugate to $\pm \begin{pmatrix} 1 & \epsilon \\ 0 & 1 \end{pmatrix}$ for any $\epsilon \neq 0$. Therefore the closure of this orbit contains $\pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. All this says that $\chi(S^1 \times S^2) = \mathbb{C}^* / \tau$, where $\tau(x) = x^{-1}$. $t_{2n}(x) = \times 4 x^{-1}$ Made with Goodnotes

Giulio Belletti (U-Bourgogne)

21/11/2024

The skein module at -1

Look at the Kauffman relations at -1:

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

21/11/2024

э

10/23

Look at the Kauffman relations at -1:

A bit of work shows that it looks like the Cayley-Hamilton equation

$$\operatorname{tr}(A)\operatorname{tr}(B) = \operatorname{tr}(AB) + \operatorname{tr}(AB^{-1})$$

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

The skein module at -1

A bit of work shows that it looks like the Cayley-Hamilton equation

$$\operatorname{tr}(A)\operatorname{tr}(B) = \operatorname{tr}(AB) + \operatorname{tr}(AB^{-1})$$

Sending a link $L = L_1 \sqcup \cdots \sqcup L_n$ to $\prod_{i=1}^{n} (-\operatorname{tr}_{L_i})$ and A to -1 gives a map between S(M) and $\mathbb{C}[\chi(M)]$ (Bullock);

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

Look at the Kauffman relations at -1:

A bit of work shows that it looks like the Cayley-Hamilton equation

$$\operatorname{tr}(A)\operatorname{tr}(B) = \operatorname{tr}(AB) + \operatorname{tr}(AB^{-1})$$

Sending a link $L = L_1 \sqcup \cdots \sqcup L_n$ to $\prod_{i=1}^{n} (-\operatorname{tr}_{L_i})$ and A to -1 gives a map between S(M) and $\mathbb{C}[\chi(M)]$ (Bullock); and actually $S_{-1}(M)$

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

10/23

Look at the Kauffman relations at -1:

A bit of work shows that it looks like the Cayley-Hamilton equation

$$\operatorname{tr}(A)\operatorname{tr}(B) = \operatorname{tr}(AB) + \operatorname{tr}(AB^{-1})$$

Sending a link $L = L_1 \sqcup \cdots \sqcup L_n$ to $\prod_1^n (-\operatorname{tr}_{L_i})$ and A to -1 gives a map between S(M) and $\mathbb{C}[\chi(M)]$ (Bullock); and actually $S_{-1}(M) = S(M) \otimes_{A=-1} \mathbb{C} = \mathbb{C}[\chi(M)]$ (Przytycki-Sikora).

More torsion elements

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

Torsion in skein modules

21/11/2024

Image: A matrix and a matrix

11/23

э

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

э

12/23

47 ▶

If M contains a separating sphere S that does not bound a ball, then we can cut M along (an open tubular neighborhood of) S,

12/23

If M contains a separating sphere S that does not bound a ball, then we can cut M along (an open tubular neighborhood of) S, and fill the resulting boundary components to obtain two manifolds M_1 and M_2 .

If M contains a separating sphere S that does not bound a ball, then we can cut M along (an open tubular neighborhood of) S, and fill the resulting boundary components to obtain two manifolds M_1 and M_2 .

Viceversa, if we have M_1 and M_2 we can remove two balls from them and glue them along the resulting boundary components to obtain their connected sum $M_1 \# M_2$.

If M contains a separating sphere S that does not bound a ball, then we can cut M along (an open tubular neighborhood of) S, and fill the resulting boundary components to obtain two manifolds M_1 and M_2 .

Viceversa, if we have M_1 and M_2 we can remove two balls from them and glue them along the resulting boundary components to obtain their connected sum $M_1 \# M_2$.

If *M* contains a non-separating sphere, actually $M = M' \# S^1 \times S^2$.

A manifold like $M_1 \# M_2$ is reducible (irreducible otherwise)

1997

Conjecture (Przytycki)

Let M be a compact oriented reducible 3-manifold; then S(M) contains torsion.

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

Torsion in skein modules

21/11/2024 13/23

э

An essential sphere in M is an embedded sphere that does not bound a ball.

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

< 47 ▶

An *essential sphere* in M is an embedded sphere that does not bound a ball.

An essential surface in M is an (orientable) surface embedded in M such that the inclusion map induces an injective map on π_1 s.

Let M be a compact oriented reducible 3-manifold; then S(M) contains torsion.

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

Torsion in skein modules

э

47 ▶ ◀

Let M be a compact oriented reducible 3-manifold; then S(M) contains torsion.

Conjecture (Przytycki)

Let M be a compact oriented 3-manifold that does not contain any essential, non-boundary parallel closed surface; then S(M) is a free module (and hence torsion-free).

Let M be a compact oriented reducible 3-manifold; then S(M) contains torsion. $M_1 \# M_2$ $M_1 \# 5 \times 5^2$ Conjecture (Przytycki) Let M be a compact oriented 3-manifold that does not contain any essential, non-boundary parallel closed surface; then S(M) is a free module

(and hence torsion-free).

What happens in between? It was known at the time that sometimes essential tori give rise to torsion, but nothing was known for higher genus surfaces. $M_1 + M_2$

21/11/2024

15/23

 S(M₁#M₂) has (A ± 1)-torsion if M₁ and M₂ are rational homology spheres and neither M₁ nor M₂ are connected sums of (any number of) ℝP³s (due to Przytycki, Zentner);

- S(M₁#M₂) has (A ± 1)-torsion if M₁ and M₂ are rational homology spheres and neither M₁ nor M₂ are connected sums of (any number of) ℝP³s (due to Przytycki, Zentner);
- $\mathbb{RP}^3 \# \mathbb{RP}^3$ has $(A \pm i)$ -torsion but no $(A \pm 1)$ -torsion (Mroczkowski)

21/11/2024

- S(M₁#M₂) has (A ± 1)-torsion if M₁ and M₂ are rational homology spheres and neither M₁ nor M₂ are connected sums of (any number of) ℝP³s (due to Przytycki, Zentner);
- $\mathbb{RP}^3 \# \mathbb{RP}^3$ has $(A \pm i)$ -torsion but no $(A \pm 1)$ -torsion (Mroczkowski)
- The double of the figure eight knot exterior has $(A \pm 1)$ -torsion (Veve).

Giulio Belletti (U-Bourgogne)

16/23

Giulio Belletti (U-Bourgogne)

Torsion in skein modules

21/11/2024

イロト イヨト イヨト イヨト

17 / 23

э.

• If M is closed and $b_1(M) = \dim H_1(M, \mathbb{Q}) > 0$ then S(M) contains $(A \pm 1)$ -torsion.

э

17 / 23

< 47 ▶

- If *M* is closed and $b_1(M) = \dim H_1(M, \mathbb{Q}) > 0$ then S(M) contains $(A \pm 1)$ -torsion.
- There is an M such that S(M) has torsion but M does not contain any essential surface of genus less than g, for every g.

Giulio Belletti (U-Bourgogne)

17/23

- If M is closed and $b_1(M) = \dim H_1(M, \mathbb{Q}) > 0$ then S(M) contains $(A \pm 1)$ -torsion.
- There is an M such that S(M) has torsion but M does not contain any essential surface of genus less than g, for every g.
- $S(L(p,1) \#^n \mathbb{RP}^3)$ contains $(A^2 + 1)$ -torsion for all even p and for all $n \ge 1$.

21/11/2024

- If M is closed and $b_1(M) = \dim H_1(M, \mathbb{Q}) > 0$ then S(M) contains $(A \pm 1)$ -torsion.
- There is an M such that S(M) has torsion but M does not contain any essential surface of genus less than g, for every g.
- $S(L(p,1) \#^n \mathbb{RP}^3)$ contains $(A^2 + 1)$ -torsion for all even p and for all $n \ge 1$.
- If M is a Seifert manifold

- If M is closed and $b_1(M) = \dim H_1(M, \mathbb{Q}) > 0$ then S(M) contains $(A \pm 1)$ -torsion.
- There is an M such that S(M) has torsion but M does not contain any essential surface of genus less than g, for every g.
- $S(L(p,1) \#^n \mathbb{RP}^3)$ contains $(A^2 + 1)$ -torsion for all even p and for all $n \ge 1$.
- If *M* is a *Seifert manifold* that contains an essential closed surface not parallel to the boundary, then S(M) has $A \pm 1$ torsion.

Let M be a compact oriented non-irreducible 3-manifold; then S(M) contains torsion.

Conjecture (Przytycki)

Let M be a compact oriented 3-manifold that does not contain any essential, non-boundary parallel surface; then S(M) is a free module (and hence torsion-free).

What happens in between? It was known at the time that sometimes essential tori give rise to torsion, but nothing was known for higher genus surfaces.

Let M be a compact oriented 3-manifold. Then the following are equivalent:

- (1) *M* contains an embedded essential, closed, surface that is not parallel to the boundary.
- (2) S(M) has torsion.

Let M be a compact oriented 3-manifold. Then the following are equivalent:

- (1) *M* contains an embedded essential, closed, surface that is not parallel to the boundary.
- (2) S(M) has torsion.

If M is closed, both are equivalent to

(3) S(M) is not finitely generated over $\mathbb{Z}[A, A^{-1}] \subset \mathbb{Z}[A, A^{-1}] \subset \mathbb{Z}[A, A^{-1}] \subset \mathbb{Z}[A, A^{-1}]^{\gamma}$

From $b_1 > 0$ to torsion in the skein module

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

Torsion in skein modules

21/11/2024

Image: A matrix of the second seco

19/23

3

From $b_1 > 0$ to torsion in the skein module

Theorem (Gunningham-Jordan-Safranov)

For a closed manifold M, the skein module $S(M, \mathbb{Q}(A))$ is finite dimensional.

Made with Goodnotes

Giulio Belletti (U-Bourgogne)
From $b_1 > 0$ to torsion in the skein module

Theorem (Gunningham-Jordan-Safranov)

For a closed manifold M, the skein module $S(M, \mathbb{Q}(A))$ is finite dimensional.

If $b_1(M)$ is positive, then $\mathbb{C}[\chi(M)]$ is an infinite dimensional vector space.

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

19/23

For a closed manifold M, the skein module $S(M, \mathbb{Q}(A))$ is finite dimensional.

If $b_1(M)$ is positive, then $\mathbb{C}[\chi(M)]$ is an infinite dimensional vector space. Find linearly independent $\lambda_1, \ldots, \lambda_n, \cdots \in \mathbb{C}[\chi(M)]$ and look at their preimage in S(M).

Made with Goodnotes

For a closed manifold M, the skein module $S(M, \mathbb{Q}(A))$ is finite dimensional.

If $b_1(M)$ is positive, then $\mathbb{C}[\chi(M)]$ is an infinite dimensional vector space. Find linearly independent $\lambda_1, \ldots, \lambda_n, \cdots \in \mathbb{C}[\chi(M)]$ and look at their preimage in S(M).

These elements must be linearly dependent in $S(M, \mathbb{Q}(A))$: $\sum_{i} P_i(A)\lambda'_i = 0.$

For a closed manifold M, the skein module $S(M, \mathbb{Q}(A))$ is finite dimensional.

If $b_1(M)$ is positive, then $\mathbb{C}[\chi(M)]$ is an infinite dimensional vector space. Find linearly independent $\lambda_1, \ldots, \lambda_n, \cdots \in \mathbb{C}[\chi(M)]$ and look at their preimage in S(M).

These elements must be linearly dependent in $S(M, \mathbb{Q}(A))$: $\sum_{i} P_i(A)\lambda'_i = 0.$

However they are linearly independent in $\mathbb{C}[\chi(M)]$, which means $P_i(-1) = 0$ for all *is*.

Made with Goodnotes

A (10) A (10)

For a closed manifold M, the skein module $S(M, \mathbb{Q}(A))$ is finite dimensional.

If $b_1(M)$ is positive, then $\mathbb{C}[\chi(M)]$ is an infinite dimensional vector space. Find linearly independent $\lambda_1, \ldots, \lambda_n, \cdots \in \mathbb{C}[\chi(M)]$ and look at their preimage in S(M).

These elements must be linearly dependent in $S(M, \mathbb{Q}(A))$: $\sum_{i} P_i(A) \lambda'_i = 0.$

However they are linearly independent in $\mathbb{C}[\chi(M)]$, which means $P_i(-1) = 0$ for all is.

This means $(A + 1)^k (\sum_i P'_i(A)\lambda'_i) = 0$.

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

Torsion in skein modules

3 × 4 3 × 21/11/2024

20 / 23

2

Using a torus to find torsion

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

Torsion in skein modules

21/11/2024

20 / 23

-2

Using a torus to find torsion

and

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

Torsion in skein modules

21/11/2024

20 / 23

Using a torus to find torsion

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

21/11/2024

20 / 23

< □ > < 同 > < 回 > < 回 > < 回 >

Take M that contains an essential, separating, non-boundary parallel torus T. Then cutting M along T produces two manifolds M_1 and M_2 with some toric boundary.

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

21/23

Take M that contains an essential, separating, non-boundary parallel torus T. Then cutting M along T produces two manifolds M_1 and M_2 with some toric boundary.

Theorem

Let M_1, M_2, M, T be as above. Suppose that $\rho : \pi_1(M) \to SL(2, \mathbb{C})$ is a representation satisfying the following:

- ρ is irreducible;
- ρ restricts to non-abelian representations of $\pi_1(M_1)$ and $\pi_1(M_2)$;
- ρ restricts to a non-central representation of $\pi_1(T) \subseteq \pi_1(M)$. Then S(M) contains $(A \pm 1)$ -torsion.

Made with Goodnotes

Take M that contains an essential, separating, non-boundary parallel torus T. Then cutting M along T produces two manifolds M_1 and M_2 with some toric boundary.

Theorem

Let M_1, M_2, M, T be as above. Suppose that $\rho : \pi_1(M) \to SL(2, \mathbb{C})$ is a representation satisfying the following:

- ρ is irreducible;
- ρ restricts to non-abelian representations of $\pi_1(M_1)$ and $\pi_1(M_2)$;

• ρ restricts to a non-central representation of $\pi_1(T) \subseteq \pi_1(M)$. Then S(M) contains $(A \pm 1)$ -torsion.

There is also a similar criterion for non-separating tori but it is less clean.

Made with Goodnotes

< □ > < 同 > < 回 > < 回 > < 回 >

• Finding concrete torsion elements arising from higher genus surfaces;

Made with Goodnotes

Giulio Belletti (U-Bourgogne)

-477 ▶

э

- Finding concrete torsion elements arising from higher genus surfaces;
- defining maps $S_{\zeta}(M)$ for some roots of unity, to verify $A \zeta$ torsion elements;

- Finding concrete torsion elements arising from higher genus surfaces;
- defining maps $S_{\zeta}(M)$ for some roots of unity, to verify $A \zeta$ torsion elements;
- What is the minimal torsion you can get?

Giulio Belletti (U-Bourgogne)

Thm <u>DKS</u> Under conditions, $S(M) = \mathbb{Z}[A, A^{+}]^{n}$ where n = |X(M)|Z(A, A⁻¹) 5(M, Q(A)) is g.d. for 7 closed M.

Giulio Belletti (U-Bourgogne)

э.

23 / 23

イロト イポト イヨト イヨト

12/12 LIU

Giulio Belletti (U-Bourgogne)

Torsion in skein modules

21/11/2024

э.

23 / 23

イロト イヨト イヨト イヨト

Giulio Belletti (U-Bourgogne)

イロン イ理 とく ヨン イヨン

Giulio Belletti (U-Bourgogne)

イロン イ理 とく ヨン イヨン

Giulio Belletti (U-Bourgogne)

イロン イ理 とく ヨン イヨン