### Exotic closed aspherical 4-manifolds

#### Jingyin Huang (Ohio State University) joint with With M. Davis, K. Hayden, D. Ruberman and N. Sunukjian

Knot Online Seminar, May 15

Recall that a manifold is *aspherical*, if its universal cover is contractible (equivalently, all higher homotopy groups vanishes).

Recall that a manifold is *aspherical*, if its universal cover is contractible (equivalently, all higher homotopy groups vanishes).

#### Conjecture (Borel Conjecture)

Suppose two closed aspherical manifolds have isomorphic fundamental group. Then they are homeomorphic.

Recall that a manifold is *aspherical*, if its universal cover is contractible (equivalently, all higher homotopy groups vanishes).

#### Conjecture (Borel Conjecture)

Suppose two closed aspherical manifolds have isomorphic fundamental group. Then they are homeomorphic.

#### Question

Smooth Borel Conjecture? Can we replace the word "homeomorphic" by "diffeomorphic" in the above conjecture?

Recall that a manifold is *aspherical*, if its universal cover is contractible (equivalently, all higher homotopy groups vanishes).

#### Conjecture (Borel Conjecture)

Suppose two closed aspherical manifolds have isomorphic fundamental group. Then they are homeomorphic.

#### Question

Smooth Borel Conjecture? Can we replace the word "homeomorphic" by "diffeomorphic" in the above conjecture?

On when the dimension n ≥ 5: there exists different smooth structures on the n-torus (Wall, Hsiang and Shaneson 1960s)

→ Ξ →

Recall that a manifold is *aspherical*, if its universal cover is contractible (equivalently, all higher homotopy groups vanishes).

### Conjecture (Borel Conjecture)

Suppose two closed aspherical manifolds have isomorphic fundamental group. Then they are homeomorphic.

#### Question

Smooth Borel Conjecture? Can we replace the word "homeomorphic" by "diffeomorphic" in the above conjecture?

- So when the dimension n ≥ 5: there exists different smooth structures on the n-torus (Wall, Hsiang and Shaneson 1960s)
- ② Yes when dimension n ≤ 3: classical for n ≤ 2, use Perelman's result in dimension 3.

э

< □ > < □ > < □ > < □ > < □ > < □ >

Recall that a manifold is *aspherical*, if its universal cover is contractible (equivalently, all higher homotopy groups vanishes).

### Conjecture (Borel Conjecture)

Suppose two closed aspherical manifolds have isomorphic fundamental group. Then they are homeomorphic.

#### Question

Smooth Borel Conjecture? Can we replace the word "homeomorphic" by "diffeomorphic" in the above conjecture?

- So when the dimension n ≥ 5: there exists different smooth structures on the n-torus (Wall, Hsiang and Shaneson 1960s)
- ② Yes when dimension n ≤ 3: classical for n ≤ 2, use Perelman's result in dimension 3.
- What if n = 4?

э

(日)

There exists a pair of closed aspherical 4-manifolds which are homeomorphic but not diffeomorphic.

There exists a pair of closed aspherical 4-manifolds which are homeomorphic but not diffeomorphic.

Boundary version is known before: There is a pair of compact contractible 4-manifolds with boundary that are homeomorphic but not diffeomorphic (Akbulut and Ruberman 2016)

There exists a pair of closed aspherical 4-manifolds which are homeomorphic but not diffeomorphic.

Boundary version is known before: There is a pair of compact contractible 4-manifolds with boundary that are homeomorphic but not diffeomorphic (Akbulut and Ruberman 2016)

Rough plan: we start with a pair of 4-dimensional compact 4-manifolds X and X' with boundary that are homeomorphic but not diffeomorphic (constructed by Hayden and Piccirillo), and "close them up".

There exists a pair of closed aspherical 4-manifolds which are homeomorphic but not diffeomorphic.

Boundary version is known before: There is a pair of compact contractible 4-manifolds with boundary that are homeomorphic but not diffeomorphic (Akbulut and Ruberman 2016)

Rough plan: we start with a pair of 4-dimensional compact 4-manifolds X and X' with boundary that are homeomorphic but not diffeomorphic (constructed by Hayden and Piccirillo), and "close them up".

We will first explain a general procedure that given a compact aspherical manifold X with boundary, we can build a closed aspherical manifold by taking a few copies of X and gluing them together.

There exists a pair of closed aspherical 4-manifolds which are homeomorphic but not diffeomorphic.

Boundary version is known before: There is a pair of compact contractible 4-manifolds with boundary that are homeomorphic but not diffeomorphic (Akbulut and Ruberman 2016)

Rough plan: we start with a pair of 4-dimensional compact 4-manifolds X and X' with boundary that are homeomorphic but not diffeomorphic (constructed by Hayden and Piccirillo), and "close them up".

- We will first explain a general procedure that given a compact aspherical manifold X with boundary, we can build a closed aspherical manifold by taking a few copies of X and gluing them together.
- We will explain the basic building blocks X, X' due to Hayden-Piccirillo.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

There exists a pair of closed aspherical 4-manifolds which are homeomorphic but not diffeomorphic.

Boundary version is known before: There is a pair of compact contractible 4-manifolds with boundary that are homeomorphic but not diffeomorphic (Akbulut and Ruberman 2016)

Rough plan: we start with a pair of 4-dimensional compact 4-manifolds X and X' with boundary that are homeomorphic but not diffeomorphic (constructed by Hayden and Piccirillo), and "close them up".

- We will first explain a general procedure that given a compact aspherical manifold X with boundary, we can build a closed aspherical manifold by taking a few copies of X and gluing them together.
- We will explain the basic building blocks X, X' due to Hayden-Piccirillo.
  - We explain why the manifolds after closing up are not diffeomorphic, and the second diffeomorphic and the second diffeomorphic.

Jingyin Huang (Ohio State University)joint w

Exotic aspherical 4-manifolds

# Ingredient I: The reflection group trick of Davis

Let  $\Gamma$  be a finite simplicial graph with its vertex set  $\{v_1, v_2, \ldots, v_n\}$ . The associated *right-angled Coxeter groups*  $G_{\Gamma}$  is a group with generating set  $\{v_i\}_{i=1}^n$  and the following two types of relators:

- $v_i^2 = 1$  for  $1 \le i \le n$ ;
- v<sub>i</sub>v<sub>j</sub> = v<sub>j</sub>v<sub>i</sub> whenever v<sub>i</sub> and v<sub>j</sub> are two distinct vertices that are joined by an edge in Γ.

# Ingredient I: The reflection group trick of Davis

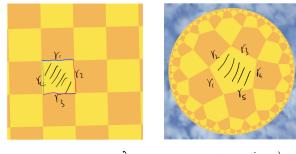
Let  $\Gamma$  be a finite simplicial graph with its vertex set  $\{v_1, v_2, \ldots, v_n\}$ . The associated *right-angled Coxeter groups*  $G_{\Gamma}$  is a group with generating set  $\{v_i\}_{i=1}^n$  and the following two types of relators:

- $v_i^2 = 1$  for  $1 \le i \le n$ ;
- v<sub>i</sub>v<sub>j</sub> = v<sub>j</sub>v<sub>i</sub> whenever v<sub>i</sub> and v<sub>j</sub> are two distinct vertices that are joined by an edge in Γ.
- $\Gamma$  is the *defining graph* of  $G_{\Gamma}$ .

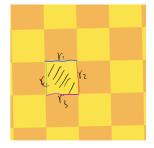
# Ingredient I: The reflection group trick of Davis

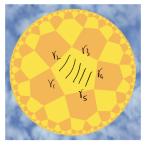
Let  $\Gamma$  be a finite simplicial graph with its vertex set  $\{v_1, v_2, \ldots, v_n\}$ . The associated *right-angled Coxeter groups*  $G_{\Gamma}$  is a group with generating set  $\{v_i\}_{i=1}^n$  and the following two types of relators:

- $v_i^2 = 1$  for  $1 \le i \le n$ ;
- v<sub>i</sub>v<sub>j</sub> = v<sub>j</sub>v<sub>i</sub> whenever v<sub>i</sub> and v<sub>j</sub> are two distinct vertices that are joined by an edge in Γ.
- $\Gamma$  is the *defining graph* of  $G_{\Gamma}$ .



Jingyin Huang (Ohio State University)joint w







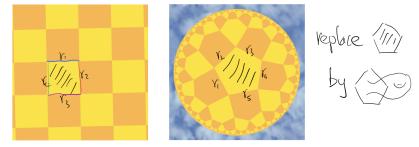


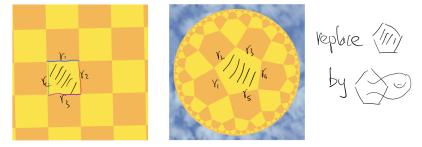
Jingyin Huang (Ohio State University)joint w

Exotic aspherical 4-manifolds

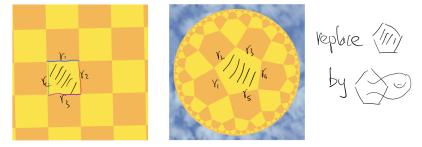
Knot Online Seminar, May 15

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

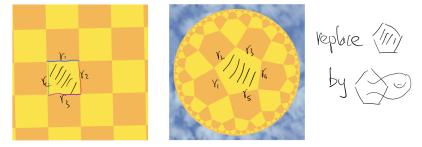




Step 2: There is an associated *right-angled Coxeter group G* whose generators  $\{s_i\}_{i=1}^n$  are in 1-1 correspondence with panels in  $\partial X$ .

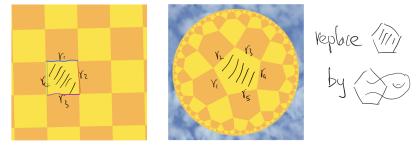


Step 2: There is an associated *right-angled Coxeter group G* whose generators  $\{s_i\}_{i=1}^n$  are in 1-1 correspondence with panels in  $\partial X$ . The relators are  $s_i^2 = 1$  for each *i*, and  $s_i s_j = s_j s_i$  whenever the associated panels have a codimension 1 intersection.



Step 2: There is an associated *right-angled Coxeter group G* whose generators  $\{s_i\}_{i=1}^n$  are in 1-1 correspondence with panels in  $\partial X$ . The relators are  $s_i^2 = 1$  for each *i*, and  $s_i s_j = s_j s_i$  whenever the associated panels have a codimension 1 intersection.

We glue copies of X to obtain a manifold D(X) such that  $G \curvearrowright D(X)$  properly discontinuously, with fundamental domain X.



Step 2: There is an associated *right-angled Coxeter group G* whose generators  $\{s_i\}_{i=1}^n$  are in 1-1 correspondence with panels in  $\partial X$ . The relators are  $s_i^2 = 1$  for each *i*, and  $s_i s_j = s_j s_i$  whenever the associated panels have a codimension 1 intersection.

We glue copies of X to obtain a manifold D(X) such that  $G \curvearrowright D(X)$  properly discontinuously, with fundamental domain X.

Step 3: Take G' to be a finite index torsion free subgroup of G. Then Q(X) = D(X)/G' is a closed manifold.

A simplicial complex Z is *flag*, if each copy of 1-skeleton of a *n*-simplex in Z spans an *n*-simplex in Z.

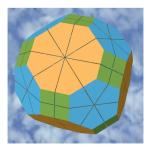
A simplicial complex Z is *flag*, if each copy of 1-skeleton of a n-simplex in Z spans an n-simplex in Z.

The barycentric subdivision of any simplicial complex is flag.

A simplicial complex Z is *flag*, if each copy of 1-skeleton of a n-simplex in Z spans an n-simplex in Z.

The barycentric subdivision of any simplicial complex is flag.

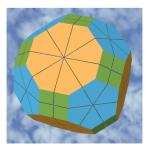
Each flag triangulation  $\mathcal{T}$  of  $\partial X$  determines a panel structure on  $\partial X$ , whose panels are top-dimensional "dual cells" of this triangulation.



A simplicial complex Z is *flag*, if each copy of 1-skeleton of a n-simplex in Z spans an n-simplex in Z.

The barycentric subdivision of any simplicial complex is flag.

Each flag triangulation  $\mathcal{T}$  of  $\partial X$  determines a panel structure on  $\partial X$ , whose panels are top-dimensional "dual cells" of this triangulation.

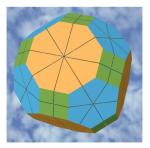


Panels of  $\partial X$  are in 1-1 correspondence with vertices of  $\mathcal{T}$ .

A simplicial complex Z is *flag*, if each copy of 1-skeleton of a n-simplex in Z spans an n-simplex in Z.

The barycentric subdivision of any simplicial complex is flag.

Each flag triangulation  $\mathcal{T}$  of  $\partial X$  determines a panel structure on  $\partial X$ , whose panels are top-dimensional "dual cells" of this triangulation.



Panels of  $\partial X$  are in 1-1 correspondence with vertices of  $\mathcal{T}$ .

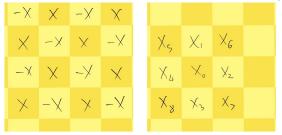
The defining graph of the associated right-angled Coxeter group G is exactly the 1-skeleton of  $\mathcal{T}$ .

Jingyin Huang (Ohio State University)joint w

Exotic aspherical 4-manifolds

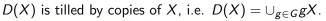
# More about D(X)

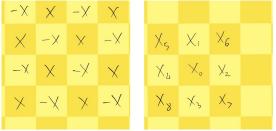
#### D(X) is tilled by copies of X, i.e. $D(X) = \bigcup_{g \in G} gX$ .



3

# More about D(X)

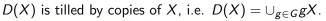


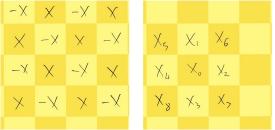


Given two copies of X, denoted  $g_1X$  and  $g_2X$  in D(X), the distance between them is the minimal numbers of reflections one need to apply to go from one copy to another copy.

э

# More about D(X)

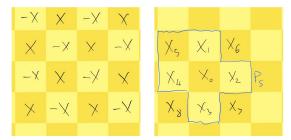




Given two copies of X, denoted  $g_1X$  and  $g_2X$  in D(X), the distance between them is the minimal numbers of reflections one need to apply to go from one copy to another copy.

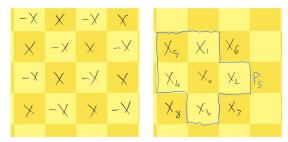
We enumerate copies of X in D(X) as  $X_0, X_1, X_2, \ldots$  such that  $d(X_i, X_0) \leq d(X_{i+1}, X_0)$ .

э



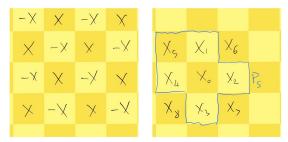
D(X) admits a filtration by  $P_n = \bigcup_{i=0}^n X_i$ .

э



#### D(X) admits a filtration by $P_n = \bigcup_{i=0}^n X_i$ .

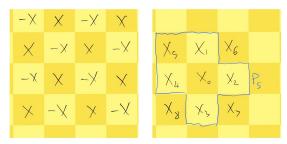
Now we assume X is PL. Then  $P_n \cap X_{n+1}$  is a top dimensional PL closed disk in  $\partial P_n$  and  $\partial X_{n+1}$ .



#### D(X) admits a filtration by $P_n = \bigcup_{i=0}^n X_i$ .

Now we assume X is PL. Then  $P_n \cap X_{n+1}$  is a top dimensional PL closed disk in  $\partial P_n$  and  $\partial X_{n+1}$ .

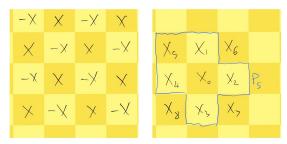
 $P_n$  is a boundary sum of the tiles  $X_i$  for  $i \leq n$ :  $P_n \stackrel{PL}{\cong} X_0 \natural \cdots \natural X_n$ .



#### D(X) admits a filtration by $P_n = \bigcup_{i=0}^n X_i$ .

Now we assume X is PL. Then  $P_n \cap X_{n+1}$  is a top dimensional PL closed disk in  $\partial P_n$  and  $\partial X_{n+1}$ .

 $P_n$  is a boundary sum of the tiles  $X_i$  for  $i \le n$ :  $P_n \stackrel{PL}{\cong} X_0 \natural \cdots \natural X_n$ . If the input manifold X is aspherical, then D(X) is aspherical, hence Q(X) is aspherical (Davis).



#### D(X) admits a filtration by $P_n = \bigcup_{i=0}^n X_i$ .

Now we assume X is PL. Then  $P_n \cap X_{n+1}$  is a top dimensional PL closed disk in  $\partial P_n$  and  $\partial X_{n+1}$ .

 $P_n$  is a boundary sum of the tiles  $X_i$  for  $i \leq n$ :  $P_n \stackrel{PL}{\cong} X_0 \natural \cdots \natural X_n$ .

If the input manifold X is aspherical, then D(X) is aspherical, hence Q(X) is aspherical (Davis). If X is smooth, then D(X) is smooth.

### Ingredient II: Hayden-Piccirillo manifolds

X is obtained from the contractible Akbulut cork C by attaching a "genus-1 handle" along a knot in  $\partial C$ .

### Ingredient II: Hayden-Piccirillo manifolds

X is obtained from the contractible Akbulut cork C by attaching a "genus-1 handle" along a knot in  $\partial C$ .

*C* is a compact smooth contractible 4-manifold together with an involutive diffeomorphism  $f : \partial C \to \partial C$  which does not extend to a self-diffeomorphism of *C*, although it does extend to a self-homeomorphism of *C*. The map *f* is called a *cork twist*.

### Ingredient II: Hayden-Piccirillo manifolds

X is obtained from the contractible Akbulut cork C by attaching a "genus-1 handle" along a knot in  $\partial C$ .

*C* is a compact smooth contractible 4-manifold together with an involutive diffeomorphism  $f : \partial C \to \partial C$  which does not extend to a self-diffeomorphism of *C*, although it does extend to a self-homeomorphism of *C*. The map *f* is called a *cork twist*.

A genus 1-handle is a copy of  $F \times \mathbb{D}^2$  where F is a genus-1 surface with one boundary component. We identify  $\partial F \times \mathbb{D}^2$  with a tubular neighborhood of a knot K in  $\partial C$ .



X



Let X' be obtained from X by removing the interior of C and regluing using the cork twist  $f : \partial C \to \partial C$ .



Let X' be obtained from X by removing the interior of C and regluing using the cork twist  $f : \partial C \to \partial C$ .

#### Theorem

- X and X' are homeomorphic (the homeomorphism is Id outside C);
- X is homotopic equivalent to the 2-torus;



Let X' be obtained from X by removing the interior of C and regluing using the cork twist  $f : \partial C \to \partial C$ .

#### Theorem

- X and X' are homeomorphic (the homeomorphism is Id outside C);
- X is homotopic equivalent to the 2-torus;
- **3** X embeds smoothly in  $B^4$ ;



Let X' be obtained from X by removing the interior of C and regluing using the cork twist  $f : \partial C \to \partial C$ .

#### Theorem

- X and X' are homeomorphic (the homeomorphism is Id outside C);
- X is homotopic equivalent to the 2-torus;
- **3** X embeds smoothly in  $B^4$ ;
- every homologically essential, smoothly embedded surface in X has genus ≥ 2;



Let X' be obtained from X by removing the interior of C and regluing using the cork twist  $f : \partial C \to \partial C$ .

#### Theorem

- **()** X and X' are homeomorphic (the homeomorphism is Id outside  $\mathring{C}$ );
- X is homotopic equivalent to the 2-torus;
- **3** X embeds smoothly in  $B^4$ ;
- every homologically essential, smoothly embedded surface in X has genus ≥ 2;
- **(3)**  $H_2(X')$  is generated by a smoothly embedded torus in X'.

Jingyin Huang (Ohio State University)joint w

3

#### Theorem

D(X) and D(X') are not diffeomorphic.

э

イロト 不得下 イヨト イヨト

#### Theorem

D(X) and D(X') are not diffeomorphic.

Suppose there is a diffeo  $f : D(X') \to D(X)$ .

Take a tile X' in D(X'), and a smoothly embedded torus  $T^2 \hookrightarrow X'$  representing the generator of  $H_2(X')$ .

#### Theorem

D(X) and D(X') are not diffeomorphic.

Suppose there is a diffeo  $f : D(X') \to D(X)$ . Take a tile X' in D(X'), and a smoothly embedded torus  $T^2 \hookrightarrow X'$  representing the generator of  $H_2(X')$ .

 $f(X') \subset P_n$  for some n.

3

#### Theorem

D(X) and D(X') are not diffeomorphic.

Suppose there is a diffeo  $f : D(X') \to D(X)$ . Take a tile X' in D(X'), and a smoothly embedded torus  $T^2 \hookrightarrow X'$  representing the generator of  $H_2(X')$ .

$$f(X') \subset P_n$$
 for some  $n$ .

$$P_n \stackrel{PL}{\cong} X_0 \natural \cdots \natural X_k \natural \cdots \natural X_n \hookrightarrow B^4 \natural \cdots \natural X_k \natural \cdots \natural B^4 \cong X$$

#### Theorem

D(X) and D(X') are not diffeomorphic.

Suppose there is a diffeo  $f : D(X') \to D(X)$ . Take a tile X' in D(X'), and a smoothly embedded torus  $T^2 \hookrightarrow X'$  representing the generator of  $H_2(X')$ .

$$f(X') \subset P_n$$
 for some  $n$ .

$$P_n \stackrel{FL}{\cong} X_0 
arrow \forall X_k 
arrow \forall X_n \hookrightarrow B^4 
arrow \forall X_k 
arrow \forall B^4 \cong X$$
  
 $T^2 \hookrightarrow f(X') \stackrel{PL}{\hookrightarrow} P_n \hookrightarrow X$ , contradiction

#### Theorem

D(X) and D(X') are not diffeomorphic.

Suppose there is a diffeo  $f : D(X') \to D(X)$ . Take a tile X' in D(X'), and a smoothly embedded torus  $T^2 \hookrightarrow X'$  representing the generator of  $H_2(X')$ .

$$f(X') \subset P_n$$
 for some  $n$ .

$$P_n \stackrel{PL}{\cong} X_0 \natural \cdots \natural X_k \natural \cdots \natural X_n \hookrightarrow B^4 \natural \cdots \natural X_k \natural \cdots \natural B^4 \cong X$$

 $T^2 \hookrightarrow f(X') \stackrel{PL}{\hookrightarrow} P_n \hookrightarrow X$ , contradiction (using Wall's smoothing theorem for locally flat codimension-2 PL submanifolds of smooth manifolds).

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

# $\overline{Q(X)}$ vs $\overline{Q(X')}$

#### Theorem

For some particular choices of panel structures on  $\partial X = \partial X'$ , Q(X) and Q(X') are not diffeomorphic.

э

# Q(X) vs Q(X')

#### Theorem

For some particular choices of panel structures on  $\partial X = \partial X'$ , Q(X) and Q(X') are not diffeomorphic.

Recall that Q(X) = D(X)/G', hence  $1 \to \pi_1(D(X)) \to \pi_1(Q(X)) \to G' \to 1.$ 

э

< □ > < 凸

For some particular choices of panel structures on  $\partial X = \partial X'$ , Q(X) and Q(X') are not diffeomorphic.

Recall that Q(X) = D(X)/G', hence  $1 \rightarrow \pi_1(D(X)) \rightarrow \pi_1(Q(X)) \rightarrow G' \rightarrow 1.$ 

Observation: if  $\pi_1(D(X))$  is a characteristic subgroup of  $\pi_1(Q(X))$ , then any diffeomorphism  $Q(X) \to Q(X')$  lifts to a diffeomorphism  $D(X) \to D(X')$ .

3

For some particular choices of panel structures on  $\partial X = \partial X'$ , Q(X) and Q(X') are not diffeomorphic.

Recall that Q(X) = D(X)/G', hence  $1 \rightarrow \pi_1(D(X)) \rightarrow \pi_1(Q(X)) \rightarrow G' \rightarrow 1.$ 

Observation: if  $\pi_1(D(X))$  is a characteristic subgroup of  $\pi_1(Q(X))$ , then any diffeomorphism  $Q(X) \to Q(X')$  lifts to a diffeomorphism  $D(X) \to D(X')$ .

Note:  $\pi_1(D(X))$  is a free product of  $\mathbb{Z}^2$ 's, one for each tile in D(X).

3

イロト イヨト イヨト イヨト

For some particular choices of panel structures on  $\partial X = \partial X'$ , Q(X) and Q(X') are not diffeomorphic.

Recall that Q(X) = D(X)/G', hence  $1 \rightarrow \pi_1(D(X)) \rightarrow \pi_1(Q(X)) \rightarrow G' \rightarrow 1.$ 

Observation: if  $\pi_1(D(X))$  is a characteristic subgroup of  $\pi_1(Q(X))$ , then any diffeomorphism  $Q(X) \to Q(X')$  lifts to a diffeomorphism  $D(X) \to D(X')$ .

Note:  $\pi_1(D(X))$  is a free product of  $\mathbb{Z}^2$ 's, one for each tile in D(X).

#### Lemma

For some particular choices of panel structures on  $\partial X = \partial X'$ , any  $\mathbb{Z}^2$  subgroup of  $\pi_1(Q(X))$  are contained in  $\pi_1(D(X))$ .

For some particular choices of panel structures on  $\partial X = \partial X'$ , Q(X) and Q(X') are not diffeomorphic.

Recall that Q(X) = D(X)/G', hence  $1 \rightarrow \pi_1(D(X)) \rightarrow \pi_1(Q(X)) \rightarrow G' \rightarrow 1.$ 

Observation: if  $\pi_1(D(X))$  is a characteristic subgroup of  $\pi_1(Q(X))$ , then any diffeomorphism  $Q(X) \to Q(X')$  lifts to a diffeomorphism  $D(X) \to D(X')$ .

Note:  $\pi_1(D(X))$  is a free product of  $\mathbb{Z}^2$ 's, one for each tile in D(X).

#### Lemma

For some particular choices of panel structures on  $\partial X = \partial X'$ , any  $\mathbb{Z}^2$ subgroup of  $\pi_1(Q(X))$  are contained in  $\pi_1(D(X))$ . As a consequence,  $\pi_1(D(X))$  is a characteristic subgroup of  $\pi_1(Q(X))$ .

## Existence of $\mathbb{Z}^2$ -subgroup

$$1 \rightarrow \pi_1(D(X)) \rightarrow \pi_1(Q(X)) \rightarrow G' \rightarrow 1$$

э

$$1 \to \pi_1(D(X)) \to \pi_1(Q(X)) \to G' \to 1$$

Goal: want G' does not contain any  $\mathbb{Z}^2$ -subgroup, which is equivalent to that G has no  $\mathbb{Z}^2$ -subgroup.

$$1 \to \pi_1(D(X)) \to \pi_1(Q(X)) \to G' \to 1$$

Goal: want G' does not contain any  $\mathbb{Z}^2$ -subgroup, which is equivalent to that G has no  $\mathbb{Z}^2$ -subgroup.

Recall: generators of G are in 1-1 correspondence with vertices of  $\mathcal{T}$ , and two generators commute if the associated vertices are adjacent in  $\mathcal{T}$ .

 $1 \to \pi_1(D(X)) \to \pi_1(Q(X)) \to G' \to 1$ 

Goal: want G' does not contain any  $\mathbb{Z}^2$ -subgroup, which is equivalent to that G has no  $\mathbb{Z}^2$ -subgroup.

Recall: generators of G are in 1-1 correspondence with vertices of  $\mathcal{T}$ , and two generators commute if the associated vertices are adjacent in  $\mathcal{T}$ .

A square in  $\mathcal{T}$  is an embedded 4-cycle  $x_1x_2x_3x_4$  in  $\mathcal{T}^{(1)}$  such that  $x_1$  and  $x_3$  are not joined by an edge adjacent, and so are  $x_2$  and  $x_4$ .

 $1 \to \pi_1(D(X)) \to \pi_1(Q(X)) \to G' \to 1$ 

Goal: want G' does not contain any  $\mathbb{Z}^2$ -subgroup, which is equivalent to that G has no  $\mathbb{Z}^2$ -subgroup.

Recall: generators of G are in 1-1 correspondence with vertices of  $\mathcal{T}$ , and two generators commute if the associated vertices are adjacent in  $\mathcal{T}$ .

A square in  $\mathcal{T}$  is an embedded 4-cycle  $x_1x_2x_3x_4$  in  $\mathcal{T}^{(1)}$  such that  $x_1$  and  $x_3$  are not joined by an edge adjacent, and so are  $x_2$  and  $x_4$ .

Observation: if  $\mathcal{T}$  has a square, then G has a  $\mathbb{Z}^2$ -subgroup.

 $1 \to \pi_1(D(X)) \to \pi_1(Q(X)) \to G' \to 1$ 

Goal: want G' does not contain any  $\mathbb{Z}^2$ -subgroup, which is equivalent to that G has no  $\mathbb{Z}^2$ -subgroup.

Recall: generators of G are in 1-1 correspondence with vertices of  $\mathcal{T}$ , and two generators commute if the associated vertices are adjacent in  $\mathcal{T}$ .

A square in  $\mathcal{T}$  is an embedded 4-cycle  $x_1x_2x_3x_4$  in  $\mathcal{T}^{(1)}$  such that  $x_1$  and  $x_3$  are not joined by an edge adjacent, and so are  $x_2$  and  $x_4$ .

Observation: if  $\mathcal{T}$  has a square, then G has a  $\mathbb{Z}^2$ -subgroup.

#### Theorem (Moussong 1988)

If G has a  $\mathbb{Z}^2$ -subgroup, then  $\mathcal{T}$  has a square.

< □ > < □ > < □ > < □ > < □ > < □ >

Cor: if  $\partial X$  admits a flag no-sqaure triangulation  $\mathcal{T}$ , then G' has no  $\mathbb{Z}^2$ -subgroup.

Cor: if  $\partial X$  admits a flag no-sqaure triangulation  $\mathcal{T}$ , then G' has no  $\mathbb{Z}^2$ -subgroup.

Theorem (Przytycki-Swiatkowski 2009)

Any 3-dimensional manifold admits a flag no-sqaure triangulation.

Cor: if  $\partial X$  admits a flag no-sqaure triangulation  $\mathcal{T}$ , then G' has no  $\mathbb{Z}^2$ -subgroup.

#### Theorem (Przytycki-Swiatkowski 2009)

Any 3-dimensional manifold admits a flag no-sqaure triangulation.

#### Theorem (Przytycki-Swiatkowski 2009)

No triangulation of a 4-dimensional homology sphere is flag no-square. No triangulation of a manifold of dimension  $\geq 5$  is flag no-square.

Cor: if  $\partial X$  admits a flag no-sqaure triangulation  $\mathcal{T}$ , then G' has no  $\mathbb{Z}^2$ -subgroup.

#### Theorem (Przytycki-Swiatkowski 2009)

Any 3-dimensional manifold admits a flag no-sqaure triangulation.

#### Theorem (Przytycki-Swiatkowski 2009)

No triangulation of a 4-dimensional homology sphere is flag no-square. No triangulation of a manifold of dimension  $\geq 5$  is flag no-square.

#### Theorem

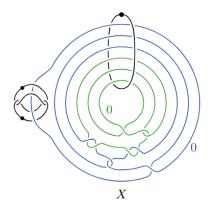
Suppose X and X' are a pair of Hayden-Piccirillo manifolds (with genus 1 handles), with a flag no-square triangulation of  $\partial X = \partial X'$ . Then Q(X) and Q(X') are closed aspherical manifolds that are homeomorphic, but not diffeomorphic.

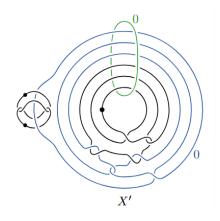
# Thank you!

æ

(3)

### Kirby diagrams for X and X'





Jingyin Huang (Ohio State University)joint w