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Motivation: Borel conjecture

Recall that a manifold is aspherical, if its universal cover is contractible
(equivalently, all higher homotopy groups vanishes).

Conjecture (Borel Conjecture)

Suppose two closed aspherical manifolds have isomorphic fundamental
group. Then they are homeomorphic.

Question

Smooth Borel Conjecture? Can we replace the word “homeomorphic” by
“diffeomorphic” in the above conjecture?

1 No when the dimension n ≥ 5: there exists different smooth
structures on the n-torus (Wall, Hsiang and Shaneson 1960s)

2 Yes when dimension n ≤ 3: classical for n ≤ 2, use Perelman’s result
in dimension 3.

3 What if n = 4?
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Exotic aspherical 4-manifolds

Theorem (Davis-Hayden-H.-Ruberman-Sunukjian)

There exists a pair of closed aspherical 4-manifolds which are
homeomorphic but not diffeomorphic.

Boundary version is known before: There is a pair of compact contractible
4-manifolds with boundary that are homeomorphic but not diffeomorphic
(Akbulut and Ruberman 2016)

Rough plan: we start with a pair of 4-dimensional compact 4-manifolds X
and X ′ with boundary that are homeomorphic but not diffeomorphic
(constructed by Hayden and Piccirillo), and “close them up”.

1 We will first explain a general procedure that given a compact
aspherical manifold X with boundary, we can build a closed aspherical
manifold by taking a few copies of X and gluing them together.

2 We will explain the basic building blocks X ,X ′ due to
Hayden-Piccirillo.

3 We explain why the manifolds after closing up are not diffeomorphic.
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Ingredient I: The reflection group trick of Davis

Let Γ be a finite simplicial graph with its vertex set {v1, v2, . . . , vn}. The
associated right-angled Coxeter groups GΓ is a group with generating set
{vi}ni=1 and the following two types of relators:

1 v2i = 1 for 1 ≤ i ≤ n;
2 vivj = vjvi whenever vi and vj are two distinct vertices that are joined

by an edge in Γ.

Γ is the defining graph of GΓ.
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Step 1: we start with a compact manifold X with boundary ∂X , and a
“panel structure” on the boundary.

Step 2: There is an associated right-angled Coxeter group G whose
generators {si}ni=1 are in 1-1 correspondence with panels in ∂X . The
relators are s2i = 1 for each i , and si sj = sjsi whenever the associated
panels have a codimension 1 intersection.

We glue copies of X to obtain a manifold D(X ) such that G ↷ D(X )
properly discontinuously, with fundamental domain X .

Step 3: Take G ′ to be a finite index torsion free subgroup of G . Then
Q(X ) = D(X )/G ′ is a closed manifold.
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On panel structure on ∂X

A simplicial complex Z is flag, if each copy of 1-skeleton of a n-simplex in
Z spans an n-simplex in Z .

The barycentric subdivision of any simplicial complex is flag.

Each flag triangulation T of ∂X determines a panel structure on ∂X ,
whose panels are top-dimensional “dual cells” of this triangulation.

Panels of ∂X are in 1-1 correspondence with vertices of T .

The defining graph of the associated right-angled Coxeter group G is
exactly the 1-skeleton of T .
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More about D(X )

D(X ) is tilled by copies of X , i.e. D(X ) = ∪g∈GgX .

Given two copies of X , denoted g1X and g2X in D(X ), the distance
between them is the minimal numbers of reflections one need to apply to
go from one copy to another copy.

We enumerate copies of X in D(X ) as X0,X1,X2, . . . such that
d(Xi ,X0) ≤ d(Xi+1,X0).
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Properties of Davis construction

D(X ) admits a filtration by Pn = ∪n
i=0Xi .

Now we assume X is PL.
Then Pn ∩ Xn+1 is a top dimensional PL closed disk in ∂Pn and ∂Xn+1.

Pn is a boundary sum of the tiles Xi for i ≤ n: Pn

PL∼= X0♮ · · · ♮Xn.

If the input manifold X is aspherical, then D(X ) is aspherical, hence Q(X )
is aspherical (Davis). If X is smooth, then D(X ) is smooth.
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Ingredient II: Hayden-Piccirillo manifolds

X is obtained from the contractible Akbulut cork C by attaching a
“genus-1 handle” along a knot in ∂C .

C is a compact smooth contractible 4-manifold together with an involutive
diffeomorphism f : ∂C → ∂C which does not extend to a
self-diffeomorphism of C , although it does extend to a
self-homeomorphism of C . The map f is called a cork twist.

A genus 1-handle is a copy of F × D2 where F is a genus-1 surface with
one boundary component. We identify ∂F × D2 with a tubular
neighborhood of a knot K in ∂C .
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Key properties of Hayden-Piccirillo manifolds

Let X ′ be obtained from X by removing the interior of C and regluing
using the cork twist f : ∂C → ∂C .

Theorem

1 X and X ′ are homeomorphic (the homeomorphism is Id outside C̊ );

2 X is homotopic equivalent to the 2-torus;

3 X embeds smoothly in B4;

4 every homologically essential, smoothly embedded surface in X has
genus ≥ 2;

5 H2(X
′) is generated by a smoothly embedded torus in X ′.
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D(X ) vs D(X ′)

Observation: D(X ) and D(X ′) are homeo, hence Q(X ) and Q(X ′) are
homeo.

Theorem

D(X ) and D(X ′) are not diffeomorphic.

Suppose there is a diffeo f : D(X ′) → D(X ).
Take a tile X ′ in D(X ′), and a smoothly embedded torus T 2 ↪→ X ′

representing the generator of H2(X
′).

f (X ′) ⊂ Pn for some n.

Pn

PL∼= X0♮ · · · ♮Xk♮ · · · ♮Xn ↪→ B4♮ · · · ♮Xk♮ · · · ♮B4 ∼= X

T 2 ↪→ f (X ′)
PL
↪→ Pn ↪→ X , contradiction (using Wall’s smoothing theorem

for locally flat codimension-2 PL submanifolds of smooth manifolds).
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Q(X ) vs Q(X ′)

Theorem

For some particular choices of panel structures on ∂X = ∂X ′, Q(X ) and
Q(X ′) are not diffeomorphic.

Recall that Q(X ) = D(X )/G ′, hence
1 → π1(D(X )) → π1(Q(X )) → G ′ → 1.

Observation: if π1(D(X )) is a characteristic subgroup of π1(Q(X )), then
any diffeomorphism Q(X ) → Q(X ′) lifts to a diffeomorphism
D(X ) → D(X ′).

Note: π1(D(X )) is a free product of Z2’s, one for each tile in D(X ).

Lemma

For some particular choices of panel structures on ∂X = ∂X ′, any Z2

subgroup of π1(Q(X )) are contained in π1(D(X )).
As a consequence, π1(D(X )) is a characteristic subgroup of π1(Q(X )).
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Existence of Z2-subgroup

1 → π1(D(X )) → π1(Q(X )) → G ′ → 1

Goal: want G ′ does not contain any Z2-subgroup, which is equivalent to
that G has no Z2-subgroup.

Recall: generators of G are in 1-1 correspondence with vertices of T , and
two generators commute if the associated vertices are adjacent in T .

A square in T is an embedded 4-cycle x1x2x3x4 in T (1) such that x1 and
x3 are not joined by an edge adjacent, and so are x2 and x4.

Observation: if T has a square, then G has a Z2-subgroup.

Theorem (Moussong 1988)

If G has a Z2-subgroup, then T has a square.
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Flag no-square triangulation of manifolds

Cor: if ∂X admits a flag no-sqaure triangulation T , then G ′ has no
Z2-subgroup.

Theorem (Przytycki-Swiatkowski 2009)

Any 3-dimensional manifold admits a flag no-sqaure triangulation.

Theorem (Przytycki-Swiatkowski 2009)

No triangulation of a 4-dimensional homology sphere is flag no-square. No
triangulation of a manifold of dimension ≥ 5 is flag no-square.

Theorem

Suppose X and X ′ are a pair of Hayden-Piccirillo manifolds (with genus 1
handles), with a flag no-square triangulation of ∂X = ∂X ′. Then Q(X )
and Q(X ′) are closed aspherical manifolds that are homeomorphic, but not
diffeomorphic.
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Thank you!
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Kirby diagrams for X and X ′
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