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Warm-up: Corks for exotic 4-manifolds

⑳
The Akbulut-Mazur manifold. There is a diffeomorphism
(involution) of the boundary which does not extend to a smooth
diffeomorphism of the 4-manifold.

Cutting it out of a closed 4-manifold and re-gluing it using the
involution may produce an exotic smooth structure. (Gauge theory
or Floer theory)



The cork theorem for h-cobordisms

Curtis-Hsiang-Freedman-Stong ’95
Matveyev ’95

Let W be a smooth 5-dimensional h-cobordism between two
simply connected, closed 4-manifolds, X0, X1.

Then there exists a contractible sub-h-cobordism C ⊂ W between
C0 ⊂ X0 and C1 ⊂ X1 such that W ∖C is a product h-cobordism.

Here C0, C1 can be shown to satisfy additional properties (which
are usually assumed when using the term “cork”), such as the
existence of an invlution on the boundary.



The proof involves analysis of a handle structure of the “middle
level” M1/2 starting from the attaching spheres {Bi} of the
3-handles and the belt spheres of the 2-handles
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Since homeomorphic simply-connected smooth 4-manifolds are
smoothly h-cobordant, it follows that exotic smooth structures on
such manifolds are related by cork twisting.



Mapping class groups of closed simply-connected 4-manifolds

Classification of homeomorphisms up to isotopy:

Theorem [Quinn, 1986]

π0Homeo+(M)
∼=−→ Aut(H2(M), λM ),

sending an isotopy classes of orientation-preserving
homeomorphisms of M to the induced isometry of the intersection
pairing λM : H2(M)×H2(M) → Z, is an isomorphism.

Building on work of Mike Freedman ’82

A correction:
Gabai-Gay-Hartman-K.-Powell ’23

Related work: Kreck ’79, Perron ’86



Mapping class groups of closed simply-connected 4-manifolds

Stable smooth isotopy:

If two self-diffeomorphisms f, g of a simply-connected smooth
4-manifold M are topologically isotopic, they are stably smoothly
isotopic.

f#Id, g#Id: M#kS
2 × S2 → M#kS

2 × S2 are smoothly
isotopic, for some k.

Quinn ’86 (corrected by GGHKP ’23)
Gabai ’22



Mapping class groups of closed simply-connected 4-manifolds

Exotic diffeomorphisms:

Topologically but not smoothly isotopic.

First examples: Ruberman ’98

Later examples:
Kronheimer-Mrowka ’20, Baraglia-Konno ’20, J. Lin ’20,
Konno-Mallick-Taniguchi ’23, and others.



Theorem 1 (KMPW)

Let X be a compact, simply-connected, smooth 4-manifold and let
f : X → X be a self-diffeomorphism such that

f#Id: X#(S2 × S2) → X#(S2 × S2)

is smoothly isotopic to the identity and f |∂X = Id∂X .

Then there exists a smooth, contractible, compact codimesnion
zero submanifold W ⊆ X, such that f is smoothly isotopic to a
diffeomorphism supported on W , i.e. that is the identity on X \ W̊ .

We call W a diff-cork for f .



Theorem 2 (KMPW)

Let X be a smooth, compact, simply-connected 4-manifold, and
let f : X → X be a diffeomorphism such that f is topologically
isotopic to identity.

Then there exists a smooth, compact, codimension zero
submanifold B ⊂ X, such that B ≃ ∨nS

2, B → X is
null-homotopic, and f is smoothly isotopic to a diffeomorphism
supported on B.



The underlying method: pseudo-isotopy theory
(Higher dimensions: Cerf, Hatcher-Wagoner, Igusa, ...)

X a smooth, compact 4-manifold. A pseudo-isotopy on X is a
diffeomorphism

F : X × [0, 1]
∼=−→ X × [0, 1]

that restricts to the identity on X × {0} ∪ ∂X × [0, 1].

Kreck (’79) classified diffeomorphisms up to smooth
pseudotisotopy. It follows that two topologically isotopic
diffeomorphisms f, g : X → X are smoothly pseudoisotopic.



Cerf graphic

Given a pseudo-isotopy F : X × I → X × I, we can define a
1-parameter family of generalized Morse functions
ft : X × [0, 1] → [0, 1] and gradient-like vector fields, where
f0 = pr2 : X × I → I and f1 = pr2 ◦F .

Both f0 and f1 have no critical points. There is a generic
1-parameter family of generalized Morse functions (a Cerf family)
ft : X × I → I, interpolating between f0 and f1. Here isolated
degenerate critical points (order 3 singularities) are allowed.

An approach to proving that pseudo-isotopy implies isotopy
consists of deformations of these 1-parameter families. The goal is
to deform ft until there are no critical points for all t ∈ [0, 1].
(Then such a pseudo-isotopy F is an isotopy.)



Hatcher-Wagoner ’73: a two-stage obstruction theory.

First obstruction Σ(F ) of a pseudoisotopy F : an element of the
secondary Whitehead group Wh2(π) of a group π.

When Σ(F ) = 0 the 1-parameter family can be deformed so that
the Cerf diagram consists of nested eyes with critical points of
index 2 and 3 only.



Hatcher-Wagoner ’73: a two-stage obstruction theory.

First obstruction Σ(F ) of a pseudoisotopy F : an element of the
secondary Whitehead group Wh2(π) of a group π.

When Σ(F ) = 0 the 1-parameter family can be deformed so that
the Cerf diagram consists of nested eyes with critical points of
index 2 and 3 only.

For the trivial group, Wh2({1}) = 0, so Σ(F ) = 0 in the
simply-connected case.

Hatcher-Wagoner, Igusa: (in dimensions ≥ 6) a secondary
obstruction

Θ: kerΣ → Wh1(π1(M);Z/2× π2(M))/χ(K3(Z[π1(M)]))



Quinn’s approach is based on the analysis of the middle-middle
level
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The Quinn core A ∪B ∪ V ∪W in the middle-middle level
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A: belt spheres of 2-handles
B: attaching spheres of 3-handles
V : finger move disks
W : Whitney move disks

Generally, finger disks intersect Whitney disks!



The Quinn core The union of the boundaries of finger and Whitney
disks, both on A and on B, consists of an immersed arc and a
collection of immersed circles.
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Quinn’s arc condition: For a single pair (A,B), the family can be
deformed so that there are no circles, and the arc is embedded,
both in A and in B.



Theorem (The cork theorem for a 1-eye pseudoisotopy, KMPW)

If F admits a Cerf family with one eye, then there exists a
compact, contractible, codimension zero, submanifold W ⊆ X and
a smooth isotopy of F , rel. X ×{0} ∪ ∂X × I, to a pseudo-isotopy
F ′, such that F ′ = Id on (X \ W̊ )× I.

In our applications we use

Theorem (Gabai ’22) Let f : X → X be a diffeomorphism with
f |∂X = Id. Then

f#Id: X#n(S2 × S2) → X#n(S2 × S2)

is smoothly isotopic to the identity rel. boundary if and only if f is
pseudo-isotopic to the identity via an n-eyed pseudo-isotopy.



Outline of the proof of the cork theorem for a 1-eye pseudoisotopy

• We use Quinn’s arc condition. Then the Quinn core
Q = A ∪B ∪ V ∪W has the homotopy type

Q ≃ S2 ∨ S2 ∨
m∨

S1.
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Outline of the proof of the cork theorem for a 1-eye pseudoisotopy

• We use Quinn’s arc condition. Then the Quinn core
Q = A ∪B ∪ V ∪W has the homotopy type

Q ≃ S2 ∨ S2 ∨
m∨

S1.

• There exists a handle structure H on M ∖Q, relative to
∂(M ∖Q), so that:

(1) π1(Q ∪ 1-handles) is free, and

(2) there exist 2-handles whose attaching regions represent the
conjugacy classes of the free generators of π1.

• Attach these 2-handles to make Q simply connected. Attach the
two 3-handles (flowing down from A and up from B) to get a
contractible h-cobordism.



Theorem 2 (KMPW)

Let X be a smooth, compact, simply-connected 4-manifold, and
let f : X → X be a diffeomorphism such that f is topologically
isotopic to identity. Then there exists a smooth, compact,
codimension zero submanifold B ⊂ X, such that B ≃ ∨nS

2,
B → X is null-homotopic, and f is smoothly isotopic to a
diffeomorphism supported on B.

Note: Budney-Gabai’s barbell diffeomorphisms are supported in
S2 ×D2#S2 ×D2.



Outline of the proof of Theorem 2
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For more then one eye, the union of boundaries of V and W form
circles, and the arc condition cannot be achieved. The Quinn core
Q has additional π2 generators formed by the finger and Whitney
disks; these generators may be non-trivial in π2(M).

Note that this analysis doesn’t come up in the proof of the
higher-dimensional (and of the 4-dimensional topological)
pseudoisotopy theorems in the simply-connected case.



Outline of the proof of Theorem 2:

There are n eyes, in other words n pairs of 2-spheres (Ai, Bi) in
the middle-middle level.

• Generators of π2 of the Quinn core corresponding to
Ai ∩Bj , i ̸= j:

⑧-
:



Key ideas:

• Add 2-handles to make the Quinn core simply-connected, as in
the 1-eye case.

• Introduce new, trivial! pseudo-isotopies, each one realizing a
particular π2 element for Ai ∩Bj .

• Concatenate them with the given pseudoisotopy



Examples

First examples of exotic diffeomorphisms of simply-connected
4-manifolds (Ruberman ’98, ’99):

For X = #2nCP 2#10n+1CP 2
if n is odd, and

X = #2nCP 2#10n+2CP 2
if n is even, there is a subgroup of

ker
(
π0Diff(X) → π0Homeo(X)

)
which abelianizes to Z∞.

These diffeomorphisms are all 1-stably isotopic to the identity
(using work of Auckly-Kim-Melvin-Ruberman), so they admit
diff-corks.

The original proof that his diffeomorphisms are exotic used
Donaldson’s theory. Baraglia-Konno more recently (2020) showed
that these diffeomorphisms, as well as many others, can be
detected using Seiberg-Witten invariants.



Corollary. There exists a compact, contractible, smooth
4-manifold W and a diffeomorphism f̃ : W → W , restricting to Id
on the boundary, such that FSW(f̃) ̸= 0.

Consider Ruberman’s example f : X → X, and apply J. Lin’s
gluing formula

FSW (f, s̃) = ⟨FSW (f̃), SW (X \ W̊ )⟩

⟨ , ⟩ : ĤM∗(∂W )⊗
−−−→
HM∗(∂W ) → Z is the pairing of the

monopole Floer homology and co-homology of ∂W .



Consider a compact, contractible n-manifold W . Fix an embedding
Dn ↪→ W̊ , and let En : Diff∂(D

n) → Diff∂(W ) be the map given
by extending diffeomorphisms of Dn by identity over W \Dn.
Galatius and Randal-Williams ’23 showed that En is a homotopy
equivalence for n ≥ 6. (Krannich-Kupers’ 24: also for n = 5.)

Our next result shows that E4 need not be a homotopy
equivalence.

Theorem Let (W, f̃) be as in the previous theorem. Then f is not
smoothly isotopic to a diffeomorphism supported on the interior of
a 4-ball, and thus the map E4 : Diff∂(D

4) → Diff∂(W ) is not
surjective on path components, so is not a homotopy equivalence.



Theorem:

For each m ≥ 1 there exists a contractible, compact, smooth
4-manifold Cm and a collection {g1, . . . , gm} of boundary-fixing
diffeomorphisms of Cm that generate a subgroup of π0Diff∂(Cm)
that abelianizes to Zm.

(Konno-Mallick ’24 proved that localizing cannot produce infinite
rank subgroups.)



Theorem:

For each m ≥ 1 there exists a contractible, compact, smooth
4-manifold Cm and a collection {g1, . . . , gm} of boundary-fixing
diffeomorphisms of Cm that generate a subgroup of π0Diff∂(Cm)
that abelianizes to Zm.

Questions

• Is there a contractible diff-cork for a diffeomorphism f which is
isotopic to Id after #nS

2 × S2, n > 1?

• The Dehn twist on K3#K3?

• π1 ̸= {1}?


	

